Table 1. Final fractional coordinates and equivalent isotropic thermal parameters for non-H atoms

...

1/**

. .

	U_{eq}	$U_{\rm eq} = \frac{1}{3}(U_{11} + U_{22} + U_{33}).$			
	x	у	z	$U_{eq}(\dot{A}^2)$	
Fe	0.2604 (1)	0.23211(6)	0.42096 (7)	0.048	
В	0.6478 (8)	0.1967 (5)	0.4816 (5)	0.035	
C(11)	0.6388 (6)	0.1535 (5)	0.3837 (4)	0.038	
C(12)	0.6773 (7)	0.1989 (5)	0.3150 (6)	0.049	
C(13)	0.6778 (8)	0.1607 (6)	0.2337 (6)	0.060	
C(14)	0.6410 (8)	0.0758 (7)	0.2156 (5)	0.059	
C(15)	0.6028 (8)	0.0277 (5)	0.2810 (6)	0.062	
C(16)	0.6036 (7)	0.0660 (5)	0.3624 (5)	0.052	
C(21)	0.7203 (8)	0.2929 (4)	0-4930 (5)	0.039	
C(22)	0.8530 (8)	0.3138 (5)	0.5573 (5)	0.042	
C(23)	0.9104 (7)	0.3964 (6)	0.5680 (5)	0.051	
C(24)	0.837 (1)	0-4646 (5)	0-5149 (6)	0.062	
C(25)	0.7059 (9)	0-4469 (5)	0.4504 (5)	0.055	
C(26)	0.6520 (8)	0.3635 (6)	0.4402 (5)	0.050	
C(31)	0.7447 (7)	0.1314 (4)	0.5621 (5)	0.037	
C(32)	0.7136 (7)	0.1133 (5)	0.6429 (5)	0.046	
C(33)	0.806 (1)	0.0621 (5)	0.7109 (5)	0.051	
C(34)	0.9352 (9)	0.0314 (5)	0.6996 (5)	0.048	
C(35)	0.9702 (7)	0.0476 (5)	0.6213 (6)	0.051	
C(36)	0.8750 (8)	0.0978 (5)	0-5529 (4)	0.040	
C(41)	0.4826 (7)	0.2024 (5)	0-4982 (4)	0.035	
C(42)	0.3858 (8)	0-1295 (4)	0-4860 (4)	0.040	
C(43)	0.2530 (8)	0-1304 (5)	0.5065 (5)	0.053	
C(44)	0.2065 (8)	0.2066 (7)	0.5395 (5)	0.069	
C(45)	0-2935 (9)	0-2810 (5)	0.5514 (5)	0.061	
C(46)	0-4297 (7)	0.2786 (5)	0.5302 (4)	0.042	
C(51)	0.201 (1)	0.1902 (6)	0.2894 (5)	0.071	
C(52)	0.073 (1)	0.2084 (9)	0.3155 (7)	0.086	
C(53)	0.082 (1)	0.2972 (8)	0.3406 (7)	0.083	
C(54)	0.211(1)	0.3318 (6)	0.3306 (7)	0.075	
C(55)	0.2847 (9)	0.2667 (9)	0.2979 (5)	0.073	

C-C distances [1.40(1) Å] is also found. The C-C bond distances average 1.39(1) Å in the other three phenyl rings.

The Fe atom is 1.537 Å from the plane defined by atoms C(41)–C(46). The angle between the planes defined by the cyclopentadienyl and phenyl rings is 2.28° . Both rings are planar to within 0.013 Å.

 Table 2. Selected interatomic distances (Å)

Fe-C(41)	2.156 (6)	Fe-C(51)	2.042 (8)
Fe-C(42)	2.060 (6)	Fe-C(52)	2.064 (8)
Fe-C(43)	2.062 (7)	Fe-C(53)	2.050 (8)
Fe-C(44)	2.072 (7)	Fe-C(54)	2.035 (8)
Fe-C(45)	2.081 (7)	Fe-C(55)	2.045 (8)
Fe-C(46)	2.090 (6)		
Fe-Cent4*	1.537	Fe-Cent5	1.660
B-C(11)	1.63 (1)	B-C(21)	1.63(1)
B-C(31)	1.65 (1)	B-C(41)	1.67 (1)

* Cent4 is the centroid of the plane defined by atoms C(41)-C(46), Cent5 by atoms C(51)-C(55).

We are grateful to Dr D. W. Slocum for supplying the crystalline sample and to Professor J. L. Atwood for the use of his diffractometer.

References

- CROMER, D. T. & LIBERMAN, D. (1970). J. Chem. Phys. 53, 1891-1898.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104-109.
- International Tables for X-ray Crystallography (1974). Vol. IV, p. 72. Birmingham: Kynoch Press.
- JOHNSON, J. W. & TREICHEL, J. W. (1977). J. Am. Chem. Soc. 99, 1427–1436.
- KRUGER, G. J., DU PREEZ, A. L. & HAINES, R. J. (1974). J. Chem. Soc. Dalton Trans. pp. 1302–1305.
- OWEN, D. A., SIEGEL, A., LIN, R., SLOCUM, D. W., CONWAY, B., MORONSKI, M. & DURAJ, S. (1980). Ann. NY Acad. Sci. pp. 90-100.
- SHELDRICK, G. M. (1976). SHELX76. A system of computer programs for X-ray structure determination. Univ. of Cambridge, England.
- SLOCUM, D. W., CONWAY, B., HODGMAN, M., KUCHEL, K., MORONSKI, M., NOBLE, R., WEBBER, K., DURAJ, S., SIEGEL, A. & OWEN, D. A. (1981). J. Macromol. Sci. Chem. 16, 357–368.

Acta Cryst. (1984). C40, 1161–1164

Tris(2,6-dimethyl-4H-pyran-4-one)dinitratocadmium(II), [Cd(NO₃)₂(C₇H₈O₂)₃]

BY A. BANERJEE AND C. J. BROWN

Department of Metallurgy and Materials Engineering, City of London Polytechnic, Central House, Whitechapel High Street, London E1 7PF, England

AND P. C. JAIN AND P. GAUTAM

Department of Chemistry, University of Kurukshetra, Kurukshetra, Haryana 132 119, India

(Received 3 January 1984; accepted 22 March 1984)

Abstract. $M_r = 608 \cdot 8$, monoclinic, $P2_1/n$, a = 19.372 (5), b = 11.345 (4), c = 23.023 (5) Å, $\beta = 93.77$ (5)°, V = 5048.9 Å³, Z = 8, $D_m = 1.60$ (1), $D_x = 1.602$ Mg m⁻³, Mo Ka, $\lambda = 0.71069$ Å, $\mu = 0.93$ mm⁻¹, F(000) = 2464, T = 293 K, R = 0.061 for 7325 observed reflexions $(I > \sigma I)$. The structure

comprises two discrete non-equivalent molecules in each of which cadmium is seven-coordinated, to three oxygen atoms of the dimethyl-4-pyrone ligands, and bidentately to four oxygen atoms of two nitrato groups. The pyrone rings are planar and there are no strong intermolecular interactions.

0108-2701/84/071161-04\$01.50

© 1984 International Union of Crystallography

1162

C(36)

C(38)

C(42) N(1)

N(2)

0(2)

0(4

O(7)

O(8)

0(9)

O(10

O(11) O(12)

O(13) O(14)

O(15)

O(16)

0(17)

O(18) O(19) O(20) O(21)

O(22)

O(23)

O(24)

Introduction. The material was originally prepared by Drs E. Briggs and A. E. Hill of the Chemistry Department in the City of London Polytechnic (Hill, 1971) as part of a research project to investigate the protective properties of compounds of this class against the corrosion of steel. The molecular formula and the atomic numbering used are shown in Fig. 1.

Experimental. Equidimensional crystals ($ca \ 0.2 \ mm$) by reacting hot solutions of cadmium nitrate and 2,6dimethyl-4-pyrone in 2.2-dimethoxypropane and cooling during addition of ethyl acetate. density by flotation Cd(1) Cd(2) in carbon tetrachloride/methylene bromide, lattice C(1) parameters initially from zero-level Weissenberg C(2) C(3) photographs and refined on the diffractometer, 7438 C(4)measured reflexions of which 113 considered unob-C(5)C(6) served; absences 0k0 for k odd and h0l for h + l odd. C(7) C(8) intensities on an Enraf-Nonius CAD-4 diffractometer C(9) at Queen Mary College with crystal enclosed in sealed C(10) glass tube, corrections made for Lp effects and for C(11) C(12) fading (maximum 8%; 3 standard reflections mon-C(13) C(14) itored) owing to deterioration of crystals, but not for CUS absorption or extinction, index range $h \ 0$ to 21, $k \ 0$ to C(16) C(17) 12, $l \ 0$ to ± 25 , $2\theta_{max} = 120^{\circ}$; structure solved from Patterson and successive Fourier syntheses; refinement C(18) C(19) C(20)on F by least squares using initially $B_{\rm iso}$ and $w^{1/2} = 1/F_o$, and finally B_{ij} until all shifts were $< 0.1\sigma$, C(21) C(22) C(23) approximate H positions determined from difference C(24) C(25) syntheses but included in structure factor calculations C(26) in idealized positions with $B_{\rm iso} = 5.0$ Å² without refin-ing, $\Delta \rho$ in final difference synthesis generally within C(27) C(28) C(29) ± 0.4 e Å⁻³ but down to -0.9 e Å⁻³ in regions around C(30) C(31) Cd atoms, $R_w = 0.16$, scattering factors from C(32) C(33)

Fig. 1. Projection of part of the unit cell on (010) showing one of the molecules and the atomic numbering used. Atoms of the second molecule are numbered C(n + 21), N(n + 2), O(n + 12).

International Tables for X-ray Crystallography (1962), computer programs of the NRC series (Ahmed, Hall, Pippy & Huber, 1970) used on our DEC-10 computer.

Table 1. Final atomic parameters and e.s.d.'s

$$B_{eq} = \frac{4}{3} \left(\frac{\beta_{11}}{a^{*2}} + \frac{\beta_{22}}{b^{*2}} + \frac{\beta_{33}}{c^{*2}} \right) \,.$$

		-	R (Å2)
<i>x</i>	<i>y</i>	2	$D_{eq}(A)$
0.38279(2)	0.37833(3) 0.09814(3)	0.33313(1) 0.84911(1)	3.40(1)
0.30140(2) 0.2175(2)	0.2064(4)	0.3313(2)	2.59 (8)
0.2013(3)	0.2889(5)	0.3905(2)	3.43 (9)
0.1385 (3)	0.2506 (5)	0-4035 (2)	3.62 (8)
0-1133 (4)	0.2377 (8)	0.4640 (2)	5.81 (13)
0.0439 (3)	0-1839 (7)	0.2664 (3)	4.66 (11)
0.1051 (2)	0-2250 (4)	0.3052 (2)	2.87 (8)
0.1664 (3)	0.2604 (4)	0.2873 (2)	3-48 (8)
0.4089 (3)	0.3751(5)	0.2133(2)	4.14 (9)
0.3410(3)	0.4117(5) 0.4282(4)	0.1923(2)	4.07 (10)
0.3233(3)	0.4651 (6)	0.1095 (3)	5.18 (11)
0.4779 (4)	0.3592 (8)	0.0598(3)	7.94 (13)
0.4356(4)	0.3739(5)	0.0338(3)	4.23 (10)
0.4556 (3)	0.3589 (5)	0.1682 (2)	3.53 (8)
0-5312 (2)	0-4966 (5)	0.3960 (2)	3.22 (8)
0.5783 (3)	0-5446 (5)	0.4402 (2)	4.10 (8)
0.6399 (3)	0.5854 (5)	0.4255 (3)	4.35 (10)
0.6967 (3)	0.6387 (6)	0.4649 (3)	4.59 (11)
0.6440 (4)	0.5548 (7)	0.2668 (3)	6.16(13)
0.6144(3)	0.5469(3)	0.3200(2)	4·13 (9)
0.3331(3) 0.2224(2)	0.1895 (4)	0.9056 (2)	2.99 (7)
0.1811(3)	0.2095(5)	0.9537(2)	4.09 (9)
0.1183(3)	0.2598 (6)	0.9476 (2)	5.07 (11)
0.0709 (5)	0.2874 (8)	0.9946 (3)	7.08 (15)
0.0907 (4)	0.3155 (7)	0.7899 (3)	5.35 (14)
0.1282 (3)	0.2747 (4)	0.8456 (2)	3-46 (8)
0.1908 (3)	0.2237(4)	0.8507 (2)	4.12 (8)
0.3126(3)	0.0988 (6)	0.7078(2)	4.18 (9)
0.2008(3) 0.2732(3)	0.0027(0)	0.6091(2)	4.16 (9)
0.2732(3) 0.2242(5)	0.0080 (8)	0.5596(3)	7.37 (17)
0.4541(4)	0.1190 (8)	0.5968 (3)	7.86 (15)
0.3900 (4)	0.1038 (5)	0.6299 (3)	4.75 (11)
0.3783 (4)	0.1213 (6)	0-6862 (2)	5.27 (11)
0.5181 (2)	-0.0011 (4)	0.8232 (2)	2.99 (8)
0.5418 (2)	-0.0183 (5)	0.8830 (2)	3.97 (9)
0.6055(3)	-0.05/3(4)	0.8994(2)	3·32 (8) 4.96 (11)
0.6875(3)	-0.1086 (6)	0.7642(3)	4.70 (11)
0.6310(2)	-0.0732(4)	0.8018 (2)	2.91 (8)
0.5680 (3)	-0.0335 (5)	0.7837 (2)	3.94 (9)
0-3291 (3)	0.6013 (4)	0.3776 (2)	3.30 (8)
0.4014 (3)	0-1562 (4)	0-4076 (2)	4.38 (9)
0.3540 (3)	-0.1540 (5)	0.8726(3)	5-13 (11)
0.4250 (3)	0.2940(4) 0.2204(3)	0.8937(2) 0.3144(2)	4.00 (9)
0.0895 (2)	0.2176(3)	0.3616(1)	3.46 (6)
0.4283(2)	0.3599(4)	0.2664(2)	5.03 (8)
0.3695 (2)	0.4082 (4)	0-0944 (2)	4.37 (7)
0.4739 (2)	0-4574 (4)	0.4106 (2)	4.80 (7)
0.6592 (2)	0.5884 (3)	0.3698 (2)	3.68 (7)
0.3572 (3)	0.5771(4)	0.3329 (2)	5.87 (8)
0.3224(2)	0.5224(4)	0.4123(2)	4.99 (8)
0.3090(4) 0.4193(3)	0.1738(4)	0.3582(3)	6.04 (10)
0.3743(3)	0.2399(4)	0.4321(2)	6.24 (9)
0.4077(3)	0.0628(5)	0.4332 (3)	6.95 (12)
0.2808 (2)	0.1415 (4)	0.9111 (2)	4.18 (7)
0.0926 (2)	0 2927 (3)	0.8941 (2)	3.90 (7)
0.3029 (2)	0.1162 (4)	0.7609 (2)	4.91 (8)
0.3376 (3)	0.0668 (4)	0.5922 (2)	5.46 (9)
0.4596 (2)	0.0348 (4)	0.8057 (2)	4.86 (7)
0.3254 (2)		0.8202(2)	5,30 (10)
0.3588 (4)	-0.2600(5)	0.8842 (3)	7.60 (13
0.3814 (2)	-0.0840 (4)	0.9084 (2)	4.43 (8)
0.3900 (3)	0.2900 (5)	0.8478 (2)	6.15 (10
0.4354 (2)	0.2025 (4)	0.9205 (2)	4.70 (8)
0.4459 (4)	0.3889 (5)	0.9108 (3)	7.71 (13)

Table 2. Bond lengths (Å) and selected inter-bond angles (°)

Angles subtended at Cd(1) and Cd(2) have been deposited (see deposition footnote).

$\begin{array}{c} \text{Cd}(1) & - \text{O}(1) \\ \text{Cd}(1) & - \text{O}(3) \\ \text{Cd}(1) & - \text{O}(5) \\ \text{Cd}(1) & - \text{O}(7) \\ \text{Cd}(1) & - \text{O}(7) \\ \text{Cd}(1) & - \text{O}(1) \\ \text{Cd}(1) & - \text{O}(1) \\ \text{Cd}(1) & - \text{O}(1) \\ \text{Cd}(1) & - \text{C}(1) \\ \text{Cd}(1) & - \text{C}(1) \\ \text{Cd}(1) & - \text{C}(2) \\ \text{Cd}(3) & - \text{C}(2) \\ \text{Cd}(3) & - \text{C}(2) \\ \text{Cd}(3) & - \text{C}(3) \\ \text{Cd}(3) & - \text{C}(4) \\ \text{Cd}(5) & - \text{C}(6) \\ \text{Cf}(5) & - \text{C}(6) \\ \text{Cf}(5) & - \text{C}(6) \\ \text{Cf}(5) & - \text{C}(6) \\ \text{Cf}(8) & - \text{C}(7) \\ \text{O}(3) & - \text{C}(8) \\ \text{Cf}(8) & - \text{C}(14) \\ \text{Cf}(10) & - \text{C}(11) \\ \text{Cf}(10) & - \text{C}(14) \\ \text{Cf}(10) & - \text{C}(13) \\ \text{Cf}(13) & - \text{C}(14) \\ \text{Cf}(13) & - \text{C}(14) \\ \text{Cf}(15) & - \text{C}(15) \\ \text{Cf}(15) & - \text{C}(15) \\ \text{Cf}(15) & - \text{C}(16) \\ \text{Cf}(15) & - \text{C}(16) \\ \text{Cf}(17) & - \text{C}(18) \\ \text{Cf}(17) & - \text{C}(18) \\ \text{Cf}(17) & - \text{C}(18) \\ \text{Cf}(17) & - \text{C}(20) \\ \text{Cf}(20) & - \text{C}(20) \\ \text{Cf}(20) & - \text{C}(21) \\ \text{N}(1) & - \text{O}(7) \\ \text{N}(1) & - \text{O}(7) \\ \end{array}$	$\begin{array}{l} 2.281 \ (4) \\ 2.287 \ (4) \\ 2.287 \ (4) \\ 2.297 \ (4) \\ 2.297 \ (4) \\ 2.420 \ (5) \\ 2.444 \ (4) \\ 2.420 \ (5) \\ 2.382 \ (5) \\ 1.280 \ (6) \\ 1.421 \ (6) \\ 1.421 \ (6) \\ 1.429 \ (7) \\ 1.514 \ (8) \\ 1.362 \ (6) \\ 1.355 \ (5) \\ 1.511 \ (8) \\ 1.363 \ (7) \\ 1.526 \ (6) \\ 1.433 \ (7) \\ 1.526 \ (6) \\ 1.433 \ (7) \\ 1.508 \ (8) \\ 1.354 \ (7) \\ 1.508 \ (8) \\ 1.354 \ (7) \\ 1.508 \ (8) \\ 1.354 \ (7) \\ 1.508 \ (8) \\ 1.354 \ (7) \\ 1.508 \ (8) \\ 1.354 \ (7) \\ 1.508 \ (9) \\ 1.360 \ (8) \\ 1.370 \ (7) \\ 1.508 \ (9) \\ 1.360 \ (8) \\ 1.370 \ (7) \\ 1.516 \ (9) \\ 1.343 \ (8) \\ 1.226 \ (7) \\ 1.213 \ (6) \\ \end{array}$	$\begin{array}{c} Cd(2)-O(13)\\ Cd(2)-O(15)\\ Cd(2)-O(17)\\ Cd(2)-O(17)\\ Cd(2)-O(21)\\ Cd(2)-O(22)\\ Cd(2)-O(22)\\ Cd(2)-C(23)\\ Cd(2)-C(23)\\ Cd(2)-C(23)\\ Cd(2)-C(24)\\ C(24)-C(25)\\ C(24)-C(24)\\ C(24)-C(25)\\ C(24)-O(14)\\ O(14)-C(27)\\ C(26)-C(27)\\ C(36)-C(36)\\ C(36)-C(37)\\ C(36)-C(34)\\ C(36)-C(37)\\ C(36)-C(41)\\ C(40)-C(41)\\ C(41)-C(42)\\ N(3)-O(19)\\ N(3)-O(20)\\ \end{array}$	$\begin{array}{c} 2.267 \ (4) \\ 2.282 \ (4) \\ 2.282 \ (4) \\ 2.281 \ (4) \\ 2.2416 \ (5) \\ 2.416 \ (5) \\ 2.400 \ (4) \\ 2.357 \ (6) \\ 1.421 \ (5) \\ 1.423 \ (6) \\ 1.424 \ (6) \\ 1.421 \ (7) \\ 1.351 \ (7) \\ 1.365 \ (6) \\ 1.502 \ (10) \\ 1.364 \ (7) \\ 1.366 \ (7) \\ 1.366 \ (7) \\ 1.366 \ (7) \\ 1.366 \ (7) \\ 1.368 \ (7) \\ 1.348 \ (7) \\ 1.343 \ (7) \\ 1.342 \ (7) \\ 1.342 \ (7) \\ 1.342 \ (7) \\ 1.342 \ (7) \\ 1.342 \ (7) \\ 1.342 \ (7) \\ 1.342 \ (7) \\ 1.342 \ (7) \\ 1.342 \ (7) \\ 1.342 \ (7) \\ 1.342 \ (7) \\ 1.342 \ (7) \\ 1.234 \ (8) \\ 1.234 \$
N(1)-O(9) N(2)-O(10) N(2)-O(11)	1.215 (8) 1.220 (7) 1.239 (7)	N(3) - O(21) N(4) - O(22) N(4) - O(23) N(4) - O(24)	1.239 (7) 1.217 (7) 1.218 (6)
$\begin{array}{c} Cd(1) - O(1) - C(1)\\ Cd(1) - O(3) - C(8)\\ Cd(1) - O(3) - C(15)\\ C(2) - C(1) - O(7)\\ C(2) - C(1) - O(7)\\ C(2) - C(1) - O(7)\\ C(2) - C(3) - O(2)\\ C(3) - O(3) - O(3)\\ C(3) - O(3) - O(3)\\$	$\begin{array}{c} 138 \cdot 1 & (3) \\ 137 \cdot 9 & (4) \\ 1 & 130 \cdot 4 & (3) \\ 118 \cdot 4 & (4) \\ 124 \cdot 4 & (4) \\ 117 \cdot 1 & (4) \\ 119 \cdot 6 & (5) \\ 126 \cdot 1 & (5) \\ 127 \cdot 1 & (4) \\ 118 \cdot 2 & (4) \\ 125 \cdot 9 & (5) \\ 109 \cdot 3 & (4) \\ 124 \cdot 7 & (4) \\ 116 \cdot 9 & (5) \\ 124 \cdot 7 & (4) \\ 116 \cdot 9 & (5) \\ 124 \cdot 7 & (4) \\ 113 \cdot 7 & (5) \\ 124 \cdot 9 & (5) \\ 121 \cdot 3 & (5) \\ 124 \cdot 9 & (5) \\ 121 \cdot 3 & (5) \\ 121 \cdot 3 & (5) \\ 121 \cdot 3 & (5) \\ 121 \cdot 4 & (5) \\ 121 \cdot 6 & (5) \\ 122 \cdot 5 & (5) \\ 121 \cdot 4 & (5) \\ 122 \cdot 5 & (5) \\ 122 \cdot 5 & (5) \\ 121 \cdot 4 & (5) \\ 112 \cdot 4 & (5) \\ 121 \cdot 1 & (6) \\ \end{array}$	$\begin{array}{c} Cd(2) - O(13) - C(12) \\ Cd(2) - O(15) - C(12) \\ Cd(2) - O(15) - C(12) \\ Cd(2) - O(15) - C(12) \\ Cd(2) - C(21) - C(22) - O(12) \\ Cd(2) - C(21) - C(22) - O(12) \\ Cd(2) - C(21) - O(12) \\ Cd(2) - C(30) - C(2) \\ Cd(3) - C(31) - O(12) \\ Cd(3) - C(31) - O(12) \\ Cd(3) - C(34) - O(12) \\ Cd(3) - C(33) - C(33) - O(3) \\ Cd(3) - C(4) - O(12) \\ Cd(4) - C(41) - O(12) \\ Cd(4) - O(12) \\ Cd(4) - O(12) - O(12) \\ Cd(4) - O(12) \\ Cd(4) - O(12) - O(12) \\ Cd(4) - O(12)$	22) 134-9 (3) 22) 137-9 (4) 36) 135-2 (3) 28) 114-6 (4) 13) 122-8 (2) 25) 127-4 (6) 13) 122-8 (2) 25) 127-4 (5) 27) 122-0 (4) 28) 126-2 (5) 14) 119-3 (5) 14) 129-3 (5) 14) 129-3 (5) 14) 129-20 (4) 35) 144-7 (5) 15) 120-2 (5) 31) 122-8 (6) 32) 128-6 (6) 31) 122-9 (6) 32) 128-6 (6) 15) 120-2 (5) 31) 122-9 (6) 32) 128-6 (6) 34) 121-4 (5) 34) 121-4 (4) 38) 122-9 (5) 39) 126-7 (5) 30) 121-4 (4) 38) 122-9 (5) 39) 126-7 (5) 39)

Table 2 (cont.)

O(8) - N(1) - O(9)	121.5 (5)	O(20)-N(3)-O(21)	117-2 (6)
O(10) - N(2) - O(11)	116.6 (5)	O(22)-N(4)-O(23)	118-2 (5)
O(10) - N(2) - O(12)	124.7 (6)	O(22)-N(4)-O(24)	118-2 (6)
O(11) - N(2) - O(12)	118.7 (6)	O(23) - N(4) - O(24)	123-6 (6)

Fig. 2. 2,6-Dimethyl-4-pyrone ring showing averaged bond lengths (Å) and angles (°).

Discussion. The final atomic coordinates and equivalent isotropic temperature parameters are given in Table 1.* Bond lengths and inter-bond angles are given in Table 2.

Although prepared in the same way as the copper and zinc compounds, this cadmium compound is different in composition, probably because of the greater size of the Cd atom. Three 2,6-dimethyl-4-pyrone ligands coordinate to the metal instead of two, and the two nitrato groups are bidentate in coordination whereas in the Cu and Zn compounds they are unidentate (Brown & Lewis, 1984a,b). These differences confer seven-coordination on the Cd whereas the Cu and Zn are both four-coordinated. Seven O atoms lie at the corners of a slightly distorted pentagonal bipyramid around each of the two Cd atoms (Fig. 1), in each of which four nitrato O atoms and one 4-pyrone O atom form the equatorial plane and the two other 4-pyrone O atoms lie at the apices. The mean Cd-O distance for the 2,6-dimethyl-4-pyrone ligands is 2.283 (4) Å, while the distance for the nitrato oxygens is 2.406 (5) Å.

The six 4-pyrone rings are each closely planar, the r.m.s. deviation being 0.009 Å, with the maximum 0.018 (6) Å. The substituent oxygen and two methyl carbon atoms also lie in the plane of the rings. Mean dimensions are shown in Fig. 2. The four nitrate groups are also planar, the N atoms lying 0.006 (5), 0.011 (6),

^{*} Lists of structure factors, anisotropic thermal parameters, H-atom parameters, angles subtended at Cd(1) and Cd(2) and least-squares-planes' information have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39356 (47 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

0.002 (6) and 0.012 (5) Å out of the planes of the O atoms.

A similar structural arrangement to this has been observed in dinitratotris(pyridine)Cd^{II} (Cameron, Taylor & Nuttall, 1972) and also in aquadinitratobis(quinoline)Cd^{II} (Cameron, Taylor & Nuttall, 1973). The only structural results for 2,6-dimethyl-4-pyrone compounds are for the hydrobromide monohydrate (Hope, 1965) determined with limited X-ray data, dinitratobis(2,6-dimethyl-4-pyrone)zinc (Brown & Lewis, 1984*a*) and dinitratobis(2,6-dimethyl-4-pyrone)copper (Brown & Lewis, 1984*b*).

Our grateful thanks are due to Dr M. B. Hursthouse for arranging the data collection on the CAD-4 diffractometer at Queen Mary College, University of London.

References

- AHMED, F. R., HALL, S. R., PIPPY, M. E. & HUBER, C. P. (1970). NRC crystallographic programs for the IBM/360 system. National Research Council, Ottawa, Canada.
- BROWN, C. J. & LEWIS, J. F. P. (1984a). Acta Cryst. C40, 368-370.
- BROWN, C. J. & LEWIS, J. F. P. (1984b). Acta Cryst. Submitted.
- CAMERON, A. F., TAYLOR, D. W. & NUTTALL, R. H. (1972). J. Chem. Soc. Dalton Trans. pp. 1608-1611.
- CAMERON, A. F., TAYLOR, D. W. & NUTTALL, R. H. (1973). J. Chem. Soc. Dalton Trans. pp. 2130-2134.

HILL, A. E. (1971). PhD thesis, Univ. of London.

- Норе, Н. (1965). Acta Chem. Scand. 19, 217-222.
- International Tables for X-ray Crystallography (1962). Vol. III, pp. 202-207. Birmingham: Kynoch Press.

Acta Cryst. (1984). C40, 1164-1169

Structures of *cis*-Dichloro(methanol)(salicylaldehyde benzoylhydrazonato)iron(III), [FeCl₂($C_{14}H_{11}N_2O_2$)(CH₄O)], and Chloro(salicylaldehyde benzoylhydrazonato)copper(II) Monohydrate, [CuCl($C_{14}H_{11}N_2O_2$)].H₂O

BY A. A. ARUFFO,* T. B. MURPHY,† D. K. JOHNSON,‡ N. J. ROSE AND V. SCHOMAKER

Departments of Chemistry and Medicinal Chemistry, University of Washington, Seattle WA 98195, USA

(Received 14 October 1982; accepted 13 December 1983)

Abstract. [FeCl₂(Hsbh)(CH₃OH)] (A) (H₂sbh is salicylaldehyde benzoylhydrazone): $M_r = 398.0$, triclinic, P1, a = 6.665 (2), b = 13.818 (6), c =10.122 (4) Å, $\alpha = 108.40$ (2), $\beta = 73.23$ (2), $\gamma =$ 103.32 (2)°, V = 837 Å³, Z = 2, $D_x = 1.580$ g cm⁻³, λ (Mo Ka) = 0.71069 Å, $\mu = 12.5$ cm⁻¹, F(000) = 406, room temperature. [CuCl(Hsbh)].H₂O (B): $M_r =$ 356.3, monoclinic, $P2_1/a$, a = 16.201 (21), b = 7.107 (10), c = 12.540 (18) Å, $\beta = 89.87$ (9)°, V =1444 Å³, Z = 4, $D_x = 1.64$ g cm⁻³, $\mu = 17.7$ cm⁻¹, F(000) = 724, room temperature. For (A), 3740 observations gave R = 0.043 and wR = 0.036. For (B), 1250 observations gave R = 0.091 and wR = 0.065. The Cu coordination in (B) is square-planar, with Cl^{-} and O(1), O(2), and N(2) of Hsbh⁻; the Fe in (A) is octahedral, with axial Cl⁻ and CH₃OH in addition to Cl⁻, O(1), O(2), and N(2) as in (B). The uncoordinated hydrazidic nitrogen, N(1), remains protonated in both.

microorganisms (Dimmock, Baker & Taylor, 1972), and cultured cells (Ponka, Borova, Neuwirt, Fuchs & Necas, 1979; Johnson, Murphy, Rose, Goodwin & Pickart, 1982), which appear to be associated with its ability to chelate essential metal ions *in vivo*. Crystallographic studies of complexes (A) and (B), formed by H_2 sbh with the common essential metals iron and copper, were therefore undertaken (preliminary communication: Aruffo, Murphy, Johnson, Rose & Schomaker, 1982) as part of our attempts to understand its biological properties. Although various transition-metal complexes of Hsbh⁻ have been described, we know of no other Hsbh⁻ crystal structures.§

Introduction. H₃sbh is a potentially tridentate chelating

agent formed by the Schiff-base condensation of salicylaldehyde with benzoyl hydrazide. This agent

produces a variety of biological responses, both in

animals (Johnson, Pippard, Murphy & Rose, 1982),

Experimental. Crystals of (A) were obtained by mixing equimolar quantities of H_2 sbh and FeCl₃.6H₂O in methanol. The resulting solution was filtered; on

© 1984 International Union of Crystallography

^{*} Present address: Department of Biochemistry, Harvard University, Cambridge, MA 02138, USA.

⁺ Present address: Department of Chemistry, Ithaca College, Ithaca, NY 14850, USA.

[‡] Department of Medicinal Chemistry. Present address: Abbott Laboratories, North Chicago, Illinois 60064, USA.

 $Hsbh^-$: monoanion of H_2sbh (the H_2 here signifying the two acidic hydrogens).